A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis

نویسندگان

  • Yun Jin
  • Zhongchuan Liu
  • Yanjie Li
  • Weifeng Liu
  • Yong Tao
  • Ganggang Wang
چکیده

2-C-Methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an essential enzyme in the mevalonate-independent pathway of isoprenoid biosynthesis. This enzyme catalyzes 2-C-Methyl-d-erythritol 4-phosphate (MEP) and cytosine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDPME) and inorganic pyrophosphate (PPi). Bacillus subtilis was a kind of excellent isoprene producer. However, the studies on the key enzymes of MEP pathway in B. subtilis were still absent. In this work, the crystal structures of IspD and IspD complexed with CTP from B.subtilis were determined. For the first time, the intact P-loop was observed in the apo structure of IspD enzyme. Structural comparisons revealed that the concerted movements of the P-loop and loops close to the active site were essential in the reaction catalyzed by IspD. Meanwhile, kinetic analysis showed that the CTP hydrolytic activity of IspD from B.subtilis was over two times higher than that from Escherichia coli. These results will be useful for future target-based screening of potential inhibitors and the metabolic engineering for isoprenoid biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of IspF from Bacillus subtilis and absence of protein complex assembly amongst IspD/IspE/IspF enzymes in the MEP pathway

2-C-Methyl-d-erythritol 2,4-cyclodiphosphate synthase (IspF) is a key enzyme in the 2-C-Methyl-d-erythritol-4-phosphate (MEP) pathway of isoprenoid biosynthesis. This enzyme catalyzes the 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate (CDPME2P) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) with concomitant release of cytidine 5'-diphospate (CMP). Bacillus subtilis is a potenti...

متن کامل

Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids.

Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analys...

متن کامل

Biosynthesis of isoprenoids: characterization of a functionally active recombinant 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (IspD) from Mycobacterium tuberculosis H37Rv.

Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the leading infectious diseases to humans. It is urgent to discover novel drug targets for the development of antitubercular agents. The 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway for isoprenoid biosynthesis has been considered as an attractive target for the discovery of novel antibiotics for its essentiality in ...

متن کامل

Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: potential for drug development.

Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the ME...

متن کامل

Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD

The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016